
J. Fluid Mech. (2002), vol. 465, pp. 99–130. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112002008996 Printed in the United Kingdom

99

Navier–Stokes solutions of unsteady separation
induced by a vortex

By A. V. O B A B K O AND K. W. C A S S E L
Fluid Dynamics Research Center, Mechanical, Materials and Aerospace Engineering Department,

Illinois Institute of Technology, Chicago, IL 60616, USA

(Received 18 June 2001 and in revised form 15 February 2002)

Numerical solutions of the unsteady Navier–Stokes equations are considered for the
flow induced by a thick-core vortex convecting along a surface in a two-dimensional
incompressible flow. The presence of the vortex induces an adverse streamwise pressure
gradient along the surface that leads to the formation of a secondary recirculation
region followed by a narrow eruption of near-wall fluid in solutions of the unsteady
boundary-layer equations. The locally thickening boundary layer in the vicinity of
the eruption provokes an interaction between the viscous boundary layer and the
outer inviscid flow. Numerical solutions of the Navier–Stokes equations show that
the interaction occurs on two distinct streamwise length scales depending upon which
of three Reynolds-number regimes is being considered. At high Reynolds numbers,
the spike leads to a small-scale interaction; at moderate Reynolds numbers, the flow
experiences a large-scale interaction followed by the small-scale interaction due to
the spike; at low Reynolds numbers, large-scale interaction occurs, but there is no
spike or subsequent small-scale interaction. The large-scale interaction is found to
play an essential role in determining the overall evolution of unsteady separation
in the moderate-Reynolds-number regime; it accelerates the spike formation process
and leads to formation of secondary recirculation regions, splitting of the primary
recirculation region into multiple corotating eddies and ejections of near-wall vorticity.
These eddies later merge prior to being lifted away from the surface and causing
detachment of the thick-core vortex.

1. Introduction
The interest in unsteady separation stems from its ubiquitous nature in applications

involving high-Reynolds-number surface-bounded flows and the central role that it
plays in many of these applications. Essentially, any unsteady high-Reynolds-number
flow in which a boundary layer is subject to an adverse streamwise pressure gradient
can lead to unsteady separation involving formation of a recirculation region and
an intense eruption of near-wall vorticity. Described by Doligalski, Smith & Walker
(1994) as ‘one of the most important unsolved problems of fluid dynamics’, appli-
cations of unsteady separation include formation and detachment of the dynamic-stall
vortex on pitching airfoils and helicopter blades, the turbulence generation mechanism
near solid surfaces, the flow upstream of surface-mounted obstacles, and the flow
through various portions of turbine and compressor passages and branching pipes
(see, for example, Smith et al. 1991; Doligalski et al. 1994; Seal et al. 1995; Smith &
Walker 1995; Seal, Smith & Rockwell 1997).

From the point of view of the unsteady boundary-layer equations, unsteady separ-
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ation is defined as the onset of a finite-time singularity. According to the Moore–Rott–
Sears (MRS) model of unsteady separation articulated by Sears & Telionis (1975), this
singularity occurs along the zero vorticity line and moves with the local flow velocity.
The boundary-layer equations are an exact subset of the Navier–Stokes equations as
Re→∞, and a singularity indicates that boundary-layer fluid has penetrated much
farther from the wall than allowed for by the boundary-layer approximation. In other
words, the near-wall boundary-layer vorticity is ejected an infinite distance from the
surface, on the boundary-layer scale, in order to overcome the vanishing boundary-
layer thickness, which is O(Re−1/2). Consequently, the formation of the singularity
may be thought of as the first time at which the assumption that the boundary-layer
remains thin and attached breaks down, and the erupting boundary layer has a
significant influence on the external inviscid flow with the onset of a viscous–inviscid
interaction.

The basic eruptive phenomenon and boundary-layer singularity were first observed
by Van Dommelen (1981) and Van Dommelen & Shen (1980, 1982). Using the
Lagrangian formulation of the unsteady two-dimensional incompressible boundary-
layer equations, they have shown that a singularity forms in the non-interactive
boundary-layer solution on a circular cylinder that is impulsively started from rest.
In the latter stages of the numerical calculations, the boundary layer focuses into a
narrow region that forms on the upstream side of the recirculation zone; as a fluid
particle at the separation point is rapidly compressed in the streamwise direction, it
elongates in the direction normal to the wall. This elongation of the fluid particle in
the normal direction leads to growth of a sharp spike in the displacement thickness
as the boundary layer erupts away from the surface.

The high-Reynolds-number asymptotic structure of unsteady separation is summar-
ized schematically in figure 1, with each tier representing a subsequent asymptotic
stage and time moving from left to right. Each stage is governed by its own reduced set
of the Navier–Stokes equations. The bottom tier corresponds to the non-interactive
boundary-layer stage computed by Van Dommelen (1981) which terminates in a
singularity at t = ts. Van Dommelen & Shen (1982) and Elliott, Cowley & Smith
(1983) have obtained an analytical solution of the terminal singular structure for
two-dimensional incompressible flows, denoted by I in figure 1. It was shown that
as the flow evolves toward the singularity, the boundary layer bifurcates into two
passive shear layers above and below an intermediate vorticity-depleted region, i.e.
a region in which the velocity is nearly constant surrounding the zero-vorticity line.
As the boundary layer approaches the singularity time ts, this intermediate region
thins in the streamwise direction and grows rapidly in the direction normal to the
surface at a rate proportional to (ts − t)−1/4, forming a narrow spike. An important
characteristic of the terminal solution is its independence from the external adverse
pressure gradient that initiated the separation process. Consequently, the terminal
boundary-layer solution has been regarded as a generic structure that applies to most
cases of unsteady boundary-layer separation in two-dimensional incompressible flows
(Cowley, Van Dommelen & Lam 1990). Indeed, solutions for the unsteady boundary-
layer flow in a curved pipe (Lam 1988), rectilinear vortex-induced separation (Peridier,
Smith & Walker 1991a) and flow past the leading edge of a thin airfoil (Degani, Li
& Walker 1996) terminate in the non-interactive boundary-layer singularity at a finite
time.

The separation singularity develops in the non-interactive boundary-layer solution
as a result of a prescribed mainstream adverse pressure gradient and indicates that
new physics must become important just prior to the onset of the singularity. As the
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Figure 1. Schematic of the initial asymptotic structure of unsteady separation.

spike grows, the external flow begins to respond, leading to interaction between the
viscous boundary layer and the inviscid outer flow. Elliott et al. (1983) formulated
the first interactive stage that starts when ts − t = O(Re−2/11), denoted by II in
figure 1, and leads to the second stage of unsteady separation (the second tier in
figure 1). The initial condition for the first interactive stage is the terminal boundary-
layer solution; therefore, this asymptotic theory is predicated on the assumption
that the explosively growing spike is a precursor to the viscous–inviscid interaction.
Cassel, Smith & Walker (1996) have obtained a numerical solution of this stage in
Lagrangian coordinates that exhibits a high-frequency inviscid instability resulting in
an immediate breakdown of the first interactive stage. These results suggest that some
other physical influence may become important prior to the time scale over which
the first interactive stage acts.

Peridier, Smith & Walker (1991b) used an alternative approach to account for
viscous–inviscid interaction, the so-called interacting boundary-layer theory. They
computed the unsteady separation induced by a rectilinear vortex at large finite
Reynolds numbers using Lagrangian coordinates. Apparently unencumbered by the
instability of Cassel et al. (1996), the solution broke down in an interactive singularity
in the streamwise pressure gradient and wall shear distribution, denoted by III
in figure 1, which is consistent with the predictions by Smith (1988). Note that
the interactive-singularity time tsI was found to be prior to the terminal-solution-
singularity time ts, i.e. tsI < ts.

In order to relieve the interacting boundary-layer singularity, the next stage of
unsteady separation was proposed by Hoyle, Smith & Walker (1991) and considered
in more detail by Li et al. (1998). This stage, using the interacting boundary-layer
equations as its starting point, is characterized by the onset of local effects caused by
an increasing normal pressure gradient, which is zero to leading order in the non-
interactive and first interactive stages. Normal pressure gradient effects are associated
with the formation of a critical layer near an inflection point in the streamwise
velocity profiles and result in vortex wind-up near an extremum in the wall pressure.
This normal pressure gradient stage is represented by the third tier in figure 1.

In summary, the theory that has been developed for describing the unsteady
separation process has arisen beginning with two reduced sets of equations: (i) the
unsteady non-interacting boundary-layer equations, which leads to the first interactive
stage, and (ii) unsteady interacting boundary-layer theory. Whereas the first approach
is exact as Re → ∞, the second approach applies for large finite Reynolds numbers.
The expectation has been that the theory arising from the non-interacting boundary-
layer equations as a starting point is the limiting form as Re → ∞ of the theory
arising from interacting boundary-layer theory. However, the work of Cassel et al.
(1996) cast into doubt whether the first interactive stage is consistent within such a
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framework. It was suggested by Cassel (2000) that this may be due to the presence
of a large-scale interaction that occurs prior to spike formation and, therefore, the
small-scale interaction described by the first interactive stage.

Numerical investigations of unsteady separation typically have been considered
from two points of view, namely (i) solutions of subsets of the Navier–Stokes equations
corresponding to the limit problem as Re → ∞, or (ii) solutions of the full Navier–
Stokes equations. The first approach, as summarized above, has provided a great
deal of insight into the physical processes involved in unsteady separation. Solutions
of the full Navier–Stokes equations have the advantage that they do not make any
inherent physical assumptions about the flow; however, they are typically carried
out at relatively low Reynolds numbers owing to the increased resolution required
as the Reynolds number is increased. As a result, solutions obtained using these
two approaches generally exhibit somewhat different behaviour. In particular, the
Reynolds numbers considered in most solutions of the Navier–Stokes equations
typically have not been large enough to observe the sharp spike that occurs in
unsteady separation at high Reynolds numbers (see, for example, Orlandi 1990;
Koumoutsakos & Leonard 1995; Ghosh Choudhuri & Knight 1996). A recent study
by Brinckman & Walker (2001), however, does reveal formation of a spike in a
Navier–Stokes calculation of the flow induced by a vortex.

In order to further bridge the gap between solutions of the Navier–Stokes equations
at relatively low Reynolds numbers and solutions corresponding to the limit problem,
high-resolution numerical solutions of the unsteady Navier–Stokes equations have
been obtained for the flow induced by a thick-core vortex above an infinite plane
wall. The thick-core vortex is one in which the vorticity is distributed throughout the
vortex (Batchelor 1967), in contrast to the rectilinear vortex in which the vorticity is
entirely focused in the centre of the vortex.

Detailed results for the case with Re = 105 are given in Cassel (2000), where the
objective was to identify the three initial asymptotic stages of unsteady separation (see
figure 1) within the context of a Navier–Stokes solution at a large, but finite, Reynolds
number. The numerical results for Re = 105 are consistent with this sequence of events
except that interaction has been found to begin much earlier than allowed for by
the high-Reynolds-number asymptotic theory. Based on these results, it has been
hypothesized that there is a moderate-Reynolds-number regime in which the strong
outflows that develop within the boundary layer cause a large-scale interaction prior
to spike formation. Rapid growth of the spike then leads to a small-scale interaction
as in the high-Reynolds-number regime governed by the asymptotic theory. These
forms of interaction occur over two distinct streamwise scales depending upon the
Reynolds number of the flow.

One purpose of the present investigation is to consider a range of Reynolds
numbers in order to determine its effect upon the large-scale and small-scale inter-
action. It is found that in terms of the viscous–inviscid interaction, there are three
Reynolds-number regimes. In the high-Reynolds-number regime, the flow is gov-
erned by the asymptotic limit problem and only small-scale interaction occurs as a
result of the erupting spike. In the moderate-Reynolds-number regime, a large-scale
interaction precedes the spike formation and the subsequent small-scale interac-
tion. At low Reynolds numbers, the large-scale interaction occurs just as in the
moderate-Reynolds-number regime; however, no spike forms, and there is no small-
scale interaction. An additional purpose is to determine the post-eruptive behaviour
that ultimately leads to a significant interaction with the thick-core vortex and its
detachment.
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Figure 2. Schematic of the thick-core vortex. (a) Fixed frame of reference,
(b) frame of reference moving with the vortex.

2. Problem formulation and numerical methods
2.1. Inviscid solution for the thick-core vortex

The inviscid flow due to the thick-core vortex above a plane wall is described by
Batchelor (1967) and consists of a semi-circular vortex, in which the vorticity is pro-
portional to the streamfunction, surrounded by the irrotational flow due to a circular
cylinder in a uniform flow with speed U0. The thick-core vortex is shown schematically
in figure 2. As shown by Batchelor, the dimensional vorticity and streamfunction in
the core of the vortex are related by ω∗ = k2ψ∗ and ψ∗ ∼ J1(kr

∗) sin θ, where k is a
constant, J1 is the first-order Bessel function of the first kind, and (r∗, θ) are cylindrical
coordinates. Note that here and throughout, dimensional variables are denoted with
an asterisk. For convenience, the radius of the non-zero vorticity core is set equal to
e, the base of the natural logarithm, and k is chosen such that J1(ke) = 0 in order
to match the zero value of the streamfunction due to the irrotational flow around a
cylinder at the core boundary r∗ = e. Letting λ = ke be equal to the first zero of J1

corresponds to the simplest case of a single-cell vortex.
The vortex has a velocity Vc relative to the wall owing to its self-induced flow and

the free-stream velocity U0. Note that if placed in a stagnant fluid, i.e. U0 = 0, a
vortex with negative sign rotation, as shown in figure 2, will convect in the negative
x-direction (Vc < 0) owing to its self-induced velocity. As in Doligalski & Walker
(1984) and Degani, Walker & Smith (1998), the following parameters are defined in
order to characterize the speed of the vortex

α =
Vc

U0

, β =
α

1− α , (2.1a, b)

where α is the fractional convection rate of the vortex relative to the free-stream
velocity, and β is the non-dimensional wall speed in a frame of reference moving
with the vortex. The case with β = 0 (α = 0) corresponds to a vortex with sufficient
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Figure 3. Inviscid solution for the thick-core vortex. (a) Streamlines,
(b) streamwise pressure gradient along the surface.

self-induced velocity to exactly balance the free-stream velocity and remain stationary
relative to the wall. The influence of a moving wall is considered in Obabko & Cassel
(2002). Note that the case with β → −1 (α→∞) corresponds to a vortex propagating
in a stagnant fluid, i.e. U0 = 0. This case was investigated by Walker (1978) and
Peridier et al. (1991a, b), who considered the unsteady boundary-layer induced by a
rectilinear vortex above an infinite plane wall.

Defining r0 to be the normal distance from the surface to the centre of the vortex,
and taking r0 to be the characteristic length and the velocity at infinity, U0(1− α), to
be the characteristic velocity, it is shown in Cassel (2000) that the non-dimensional
streamfunction in cylindrical coordinates in a frame of reference moving with the
vortex is

ψ0(r, θ) =

[
r − 1

r

(
e

r0

)2
]

sin θ, r >
e

r0
, (2.2a)

ψ0(r, θ) =
2

r0

J1(kr0r)

kJ0(λ)
sin θ, r 6

e

r0
, (2.2b)

where kr0 is the first zero of the derivative of the Bessel function of the first kind.
The resulting inviscid streamlines and streamwise pressure gradient along the surface
are shown in figures 3(a) and 3(b), respectively. The stagnation points on the wall are
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located at x = ±2.0811, where x is the coordinate along the wall, non-dimensionalized
using r0, with the origin centred beneath the vortex. The pressure gradient is adverse
between the origin and the left stagnation point with respect to the local flow direction
in the lower portion of the vortex, which is from right to left. Equations (2.2) prescribe
the inviscid solution for the thick-core vortex above an infinite plane wall and provide
the initial condition for the impulsively-started Navier–Stokes calculations.

2.2. Navier–Stokes formulation

The Navier–Stokes equations in Cartesian coordinates are non-dimensionalized as
above using r0 for the characteristic length and U0(1−α) for the characteristic velocity.
In this investigation, the two-dimensional incompressible Navier–Stokes equations are
calculated using the vorticity–streamfunction formulation with the vorticity transport
equation

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1

Re

[
∂2ω

∂x2
+
∂2ω

∂y2

]
, (2.3)

where the Reynolds number is defined by Re = U0(1−α)r0/ν, and a Poisson equation
for the streamfunction

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω. (2.4)

The streamfunction is defined by u = ∂ψ/∂y, v = −∂ψ/∂x.
The flow is impulsively started at t = 0 using the inviscid solution for the thick-

core vortex (2.2) expressed in Cartesian coordinates (see Cassel 2000) as the initial
condition. Note that the centre of the vortex is initially located at x = 0, y = 1. The
initial vorticity distribution can be obtained by substituting the expression for the
streamfunction (2.2) into the Poisson equation (2.4) written in cylindrical coordinates
to give

ω0(r, θ) = 0, r > e/r0, (2.5a)

ω0(r, θ) = (kr0)
2ψ0(r, θ), r 6 e/r0, (2.5b)

at t = 0.
The boundary conditions on the streamfunction, velocity components and vorticity

at the wall and as y →∞ are

ψ = 0, u = −β, v = 0 at y = 0, (2.6a)

ψ → y, u→ 1, v → 0, ω → 0 as y →∞. (2.6b)

At upstream and downstream infinity the flow is fully developed and plane parallel,
and as shown in Cassel (2000), the streamwise velocity, streamfunction and vorticity
are as follows

u = (1 + β)erf(η)− β, |x| → ∞, (2.7a)

ψ = 2

√
t

Re

{
(1 + β)

[
η erf(η)− 1√

π
(1− e−η

2

)

]
− βη

}
, |x| → ∞, (2.7b)

ω = −∂u
∂y

= −1 + β√
π

√
Re

t
e−η

2

, |x| → ∞, (2.7c)

where η = 1
2
y(Re/t)1/2.

In order to map the semi-infinite physical domain into a finite computational
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domain and to focus grid points in regions having large gradients, the following
coordinate transformations are used

x̂ =
2

π
arctan

(x− x0

a

)
, ŷ =

2

π
arctan

(y
b

)
. (2.8a, b)

This transformation maps x→∞ to x̂ = 1 and x→ −∞ to x̂ = −1, and concentrates
grid points near x = x0, the streamwise location of the eruption, and y = 0, the
surface. The parameters a and b determine the degree of focusing of grid points,
with smaller values increasing the resolution in the desired regions. Applying these
transformations to the vorticity transport equation (2.3) gives

∂ω

∂t
= R(x̂)

∂2ω

∂x̂2
+ S(x̂)

∂2ω

∂ŷ2
+ G(x̂, ŷ)

∂ω

∂x̂
+H(x̂, ŷ)

∂ω

∂ŷ
, (2.9a)

where

R(x̂) =
1

Re
Γ 2
x (x̂), (2.9b)

S(ŷ) =
1

Re
Γ 2
y (ŷ), (2.9c)

G(x̂, ŷ) =
1

Re
Γx(x̂)Γ ′x(x̂)− Γx(x̂)u(x̂, ŷ), (2.9d)

H(x̂, ŷ) =
1

Re
Γy(ŷ)Γ ′y(ŷ)− Γy(ŷ)v(x̂, ŷ). (2.9e)

Applying the transformations to the Poisson equation for the streamfunction (2.4)
gives

A(x̂)
∂2ψ

∂x̂2
+ B(x̂)

∂ψ

∂x̂
+ C(ŷ)

∂2ψ

∂ŷ2
+ D(ŷ)

∂ψ

∂ŷ
= E(x̂, ŷ), (2.10a)

where

A(x̂) = Γ 2
x (x̂), B(x̂) = Γx(x̂)Γ ′x(x̂), (2.10b, c)

C(ŷ) = Γ 2
y (ŷ), D(ŷ) = Γy(ŷ)Γ ′y(ŷ), (2.10d, e)

E(x̂, ŷ) = −ω(x̂, ŷ). (2.10f )

The initial condition and boundary conditions (2.6) and (2.7) are likewise transformed
into the computational coordinates (x̂, ŷ). In the above equations, the Γ coefficients
are given by

Γx(x̂) =
1

πa
[1 + cos(πx̂)] , (2.11a)

Γy(ŷ) =
1

πb
[1 + cos(πŷ)] , (2.11b)

and a prime denotes differentiation with respect to the appropriate independent
variable.

2.3. Numerical methods

In order to advance the numerical solution of the vorticity–streamfunction formu-
lation of the Navier–Stokes equations forward in time, an iteration between the
vorticity and streamfunction equations is carried out at each time step until conver-
gence is obtained. The vorticity transport equation (2.9) is solved using a factored
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ADI algorithm with Crank–Nicolson time marching and upwind–downwind differ-
encing similar to that described by Peridier et al. (1991a). The algorithm is effective
in computing flows that develop large gradients. The boundary condition for the
vorticity at the wall (y = 0) is obtained using Jensen’s method which provides a
second-order accurate approximation to the vorticity at the surface obtained from the
streamfunction field. Overall, the method is O(∆x∆t, ∆y∆t) accurate.

The transformed Poisson equation for the streamfunction (2.10) is solved at each
iteration using a multigrid algorithm. This algorithm has been developed to solve
general two-dimensional linear second-order elliptic equations with variable coef-
ficients. The equation is discretized using second-order accurate central differences.
Because a good initial guess for the solution exists, i.e. the solution from the previous
time step, the coarse-grid correction is performed using V-cycles until convergence.
The restriction and interpolation operators use full weighting and bilinear interpola-
tion, respectively, and relaxation is performed using an ADI iteration. Details of the
multigrid algorithm may be found in Obabko (2001).

Note that in the vorticity–streamfunction formulation, where ψ ∼ y as y →∞, it is
necessary to truncate the vertical extent of the domain in order for the streamfunction
to remain finite throughout the computational domain. Here, a value of ymax = 10
has been found to be sufficiently large not to influence the solution.

3. Results
Numerical solutions of the Navier–Stokes equations for the flow induced by the

thick-core vortex are given for Reynolds numbers in the range between 103 and 105.
It should be noted that the Reynolds number defined in this investigation is a local
Reynolds number, based on the height of the vortex centre above the wall, and would
be much larger if based on a global length scale such as the chord length of an airfoil
if the thick-core vortex is considered to be a model of the dynamic-stall vortex. All
results shown are for a non-dimensional wall speed of β = 0. This case corresponds
to a situation in which the strength of the vortex is such that the self-induced velocity
of the vortex in the inviscid solution exactly balances the free-stream velocity, and
the vortex remains stationary relative to the surface. The influence of a moving wall
is considered in a companion study by Obabko & Cassel (2002).

3.1. Comparison of Navier–Stokes solutions with theory

Before describing numerical solutions of the Navier–Stokes equations at finite
Reynolds number, it is instructive to consider the limiting case as Re → ∞, namely
solutions of the unsteady non-interacting boundary-layer equations. These boundary-
layer solutions should compare well with the Navier–Stokes solutions for large finite
Reynolds numbers at early times, i.e. until viscous–inviscid interaction begins, and
they are indicative of the limiting-Reynolds-number behaviour in unsteady separation.
Numerical solutions of the unsteady boundary-layer equations for the flow induced
by a thick-core vortex with β = 0 are given by Cassel (2000). The boundary-layer
solution for this case exhibits a recirculation region that begins to form at approxi-
mately t = 0.4 in response to the adverse pressure gradient imposed by the thick-core
vortex. The recirculation region grows and moves in the positive x-direction, which is
locally upstream relative to the flow in the portion of the vortex adjacent to the wall.
A kink begins to form in the streamlines and vorticity contours on the upstream side
of the recirculation region at approximately tspike = 1.3 followed by the formation of
a very sharp spike that erupts away from the surface and results in a singularity at
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Re Grid a b x0 ∆xmin ∆ymin ∆t

1× 103 513× 513 0.80 0.50 −1.00 4.9× 10−3 1.5× 10−3 5× 10−4

3× 103 513× 513 0.50 0.28 −0.83 3.1× 10−3 8.4× 10−4 5× 10−4

1× 104 1025× 513 0.40 0.15 −0.78 1.2× 10−3 4.6× 10−4 2× 10−5

3× 104 4097× 513 0.20 0.09 −0.75 1.5× 10−4 2.7× 10−4 2× 10−6

1× 105 1025× 513 0.10 0.05 −0.55 3.1× 10−4 1.5× 10−4 2× 10−6

Table 1. Computational parameters.

y
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Figure 4. Streamlines from a non-interacting boundary-layer calculation,
i.e. Re→∞, at ts = 1.402 (from Cassel 2000).

ts = 1.402 at the streamwise location xs = −0.375, as shown in figure 4. The singular-
ity signals the end of the first asymptotic stage of unsteady separation (the bottom tier
in figure 1), and the sharp spike provokes a small-scale viscous–inviscid interaction
(the second tier in figure 1). These results for the thick-core vortex are qualitatively
the same as those obtained by Peridier et al. (1991a) for the boundary layer induced
by a rectilinear vortex; they only differ in the times at which the above-mentioned
events occur.

In this section, the focus is on the flow development, and, in particular, the nature of
the viscous–inviscid interaction, up to the approximate time at which the singularity
occurs in the boundary-layer calculations, and emphasis is placed on comparison of
the Navier–Stokes solutions with the theory of unsteady separation. The flow evolution
at later times is described in the next section. Considerable effort has been devoted
to ensuring that the results are grid independent and that, when scaled according
to the boundary-layer scale, they compare well with solutions of the boundary-layer
equations at early times. The results shown have been calculated using the grid sizes,
transformation parameters and time steps given in table 1. Note that a and b are
small in order to resolve the boundary layer adequately in the region beneath the
vortex where unsteady separation occurs. For some of the Reynolds numbers, coarser
grids and larger time steps have been used to obtain the solutions during the early
stages of the calculations; therefore, table 1 shows the finest grid and the smallest
time step for the calculations that produced the results shown for each Reynolds
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number. Calculations also have been performed on finer grids in order to ensure that
the results shown are grid independent.

In order to determine when viscous–inviscid interaction first begins, the streamwise
pressure gradient along the surface is followed with time. To leading order, the
streamwise pressure gradient within the boundary layer is imposed by the steady
inviscid outer flow, and the normal pressure gradient within the boundary layer is
zero during the non-interactive stage of the flow. Therefore, the streamwise pressure
gradient along the surface does not change substantially from that given by the
inviscid solution (see figure 3b) until interaction between the viscous boundary layer
and the inviscid outer flow begins. Applying the streamwise momentum equation at
the surface and writing in terms of vorticity, the streamwise pressure gradient along
the surface may be determined from

∂p

∂x

∣∣∣∣
y=0

= − 1

Re
Γy(ŷ)

∂ω

∂ŷ

∣∣∣∣
ŷ=0

, (3.1)

with respect to the transformed normal coordinate.

The evolution of the streamwise pressure gradient along the surface is shown in
figure 5 for three Reynolds numbers, Re = 103, 104 and 105. In each figure the pressure
gradient is shown for a range of times up to t = 1.0 in increments of 0.1. In all three
cases the pressure gradient is observed to begin changing at a streamwise location
in the vicinity of the minimum in pressure gradient, where the streamlines abruptly
change direction in order to pass over the recirculation region. For Re = 103, this
occurs within the range 0.6 < t < 0.7; for Re = 104, it occurs within the range
0.7 < t < 0.8; and for Re = 105, this occurs at approximately t = 0.8. The precise time
at which interaction begins for the lower Reynolds-number cases is more difficult to
determine because it influences the flow over a wider streamwise scale encompassing
the minimum in streamwise pressure gradient. However, it is clear that the time
at which interaction begins increases as the Reynolds number is increased, and
the streamwise extent of the interaction region decreases with increasing Reynolds
number.

As discussed in Cassel (2000), the onset of interaction in this way is inconsistent
with the asymptotic theory developed for the limiting case Re → ∞, which assumes
that it is the rapidly growing spike (see figure 4) that initiates interaction. In the
boundary-layer results for the thick-core vortex, the spike does not begin to form
until approximately tspike = 1.3. In light of this, the interaction that begins between
0.6 6 t 6 0.8 in the Navier–Stokes solutions for the Reynolds numbers considered
will be referred to as a large-scale interaction owing to the larger streamwise scale
over which it acts. The interaction that is then induced by the rapidly growing spike
at later times will be referred to as a small-scale interaction.

For comparison with the boundary-layer solution at the singularity time ts = 1.402
(figure 4), instantaneous streamlines are given at t = 1.4 for Re = 103 and 104 and
t = 1.3 for Re = 105 in figure 6. The normal scales in each figure are chosen such
that the physical scale y matches the boundary-layer scale ȳ in figure 4 according to
y = Re−1/2ȳ. The physical and boundary-layer scales are shown on the left and right
vertical axes, respectively. Note that results for Re = 105 are not shown at t = 1.4
owing to the presence of multiple eddies and spikes in a narrow streamwise region that
render the flow field very complex and difficult to interpret on the wide streamwise
scale shown here. The Navier–Stokes results for Re = 105 and 104 exhibit the
rapidly growing spike as in the boundary-layer results, but with increasing streamwise
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Figure 5. Streamwise pressure gradient along the surface in increments of t = 0.1 from
Navier–Stokes solutions. (a) Re = 103, (b) Re = 104, (c) Re = 105.

thickness as the Reynolds number is decreased. The most visible differences between
the cases with Re = 105 and Re = 104 as compared to the boundary-layer solution
at times close to the singularity time ts = 1.402 is the splitting of the recirculation
region into a series of corotating eddies and the formation of secondary recirculation
regions beneath the primary recirculation zone (these are visible in figures 10a and
12a). The case with Re = 105 also reveals the presence of a second spike immediately
downstream, i.e. to the left, of the primary spike. As will be described later, these
additional features can be traced to the influence of large-scale interaction.
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(c) Re = 105, t = 1.3.

Although the large-scale interaction begins later for higher Reynolds numbers, the
spike formation occurs slightly earlier for Re = 105 than for Re = 104. In both
cases, however, it is prior to the time tspike at which the spike begins to form in the
non-interacting boundary-layer results. This supports the conclusion of Peridier et al.
(1991b) that interaction accelerates the unsteady separation process. This acceleration,
however, had been attributed to what is here referred to as small-scale interaction
which is induced by the spike. In order for the spike formation process itself to
be accelerated, however, it must be due to the large-scale interaction that begins
prior to formation of the spike. With hindsight, this appears to be consistent with
the interacting boundary-layer results of Peridier et al. (1991b) in that interaction
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pressure gradient along the surface (solid) and skin friction coefficient (dashed).

must begin prior to formation of the spike because the interacting boundary-layer
singularity time tsI was not only prior to the non-interactive singularity time ts, but in
some cases was found to occur prior to the time tspike at which the spike begins to form
in the non-interactive calculation (cf. Peridier et al. 1991a). Therefore, the acceleration
could not be caused, at least initially, by the small-scale interaction induced by the
spike.

The results for Re = 103 at t = 1.4 shown in figure 6(a) are significantly different
from those for the higher Reynolds numbers. There is no spike on the upstream side
of the recirculation region (or if there is a spike, its streamwise width is comparable
in size to the recirculation region), the recirculation region has not split, and no
secondary recirculation regions exist at t = 1.4. As would be expected, owing to
normal pressure gradients, or possibly streamwise diffusion, there is a Reynolds
number below which the spike does not form at all on a scale distinct from that of
the recirculation region; therefore, there is no subsequent small-scale interaction. For
the thick-core vortex considered here, this critical Reynolds number is in the range
1× 103 < Re < 3× 103.

These results, along with the high-Reynolds-number theory (see Doligalski et al.
1994, and the references therein), suggest that in terms of viscous–inviscid interaction
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Figure 8. Re = 104 at t = 1.1. For caption details see figure 7.

there are three Reynolds-number regimes. In the low-Reynolds-number regime there is
a large-scale interaction, apparently due to the developing strong outflows immediately
upstream of the recirculation region, but no subsequent spike formation on a scale
distinct from the large-scale interaction; therefore, there is no small-scale interaction.
In the moderate-Reynolds-number regime, exemplified by the results for Re = 104 and
105, the large-scale interaction occurs as in the low-Reynolds-number regime followed
by spike formation and small-scale interaction. In the high-Reynolds-number regime,
either there is no large-scale interaction at all, as in the limiting case as Re → ∞, or
it begins too late to influence the flow evolution substantially; instead, there is only
small-scale interaction provoked by the erupting spike. It has not been possible in
this investigation to determine the critical Reynolds number between the moderate-
and high-Reynolds-number regimes.

In order to illustrate the details of the flow development in the moderate-Reynolds-
number regime and the mechanism by which large-scale interaction accelerates and
modifies the unsteady separation process, a detailed series of results from a Navier–
Stokes calculation are given for the case with Re = 104 in figures 7–11. Each figure
shows the instantaneous streamlines superimposed on the vorticity contours in (a) and
the streamwise pressure gradient along the surface and the skin friction coefficient in
(b) for a series of times: t = 0.7, 1.1, 1.3, 1.45 and 1.55 in figures 7 to 11, respectively.
In these figures the minimum contour is ω = −94 2

3
, the maximum contour is ω = 94 2

3
,
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and the ω = 0 contour is dashed. The increment between each contour is ω = 23 2
3
.

The skin friction coefficient is determined from Cf = −2Re−1ω|y=0. Note that the skin
friction coefficient is scaled in the figures in order for it to be of the same order of
magnitude as the streamwise pressure gradient with which it is plotted. Also note
that the extent of the streamwise scale has been reduced in comparison to figure 6 in
order to show the evolution of the flow within the boundary layer more clearly. In
order to illustrate the near-wall flow evolution in the low-Reynolds-number regime,
a similar sequence of results for Re = 103 is given in Obabko (2001).

Beginning at the impulsive start, positive vorticity is generated at the surface and
is convected downstream in the negative x-direction. When the recirculation region
forms at t ≈ 0.4, in agreement with the boundary-layer results, negative vorticity begins
to be generated immediately beneath it. The resulting zero-vorticity line associated
with the recirculation region is a necessary precursor to the MRS criterion for unsteady
separation. As shown in figure 7 at t = 0.7, the recirculation region has grown in size
normal to the surface and is moving upstream against the oncoming flow in the bottom
portion of the thick-core vortex. This is approximately the time at which large-scale
interaction begins, leading to local changes in the streamwise pressure gradient. This
change is clearly visible at t = 1.1 in figure 8(b) with the formation of a local maximum
in the vicinity of x = −0.7. It is at this time that a small spike begins to form on the
recirculation region at x ≈ −0.85; this spike then grows rapidly in the direction normal
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Figure 10. Re = 104 at t = 1.45. For caption details see figure 7.

to the surface as evidenced by the streamlines at subsequent times. At t = 1.3, the
pressure gradient in the large-scale interaction region becomes positive (see figure 9b),
i.e. locally adverse from the point of view of the flow beneath the recirculation
region, leading to the formation of a secondary recirculation region that is evident
near x = −0.75 at t = 1.45 as shown in figure 10(a). Observe that this secondary
recirculation region causes the negative vorticity convecting in the positive x-direction
near the wall to be lifted away from the surface and the primary recirculation region
to be distorted from below. Also at this time, a small region of positive vorticity has
begun to form at the surface, i.e. Cf < 0, beneath the secondary recirculation region.

Whereas the spike on the primary recirculation region does not begin to form until
tspike ≈ 1.3 in the non-interacting boundary-layer results, the spike in the Navier–
Stokes solutions for Re = 104 has already formed and grown substantially by this
time. The mechanism by which large-scale interaction accelerates spike formation
can be inferred from the evolution of the streamwise pressure gradient with time. At
t = 1.3, the streamwise pressure gradient exhibits a minimum (figure 9b), i.e. locally
favourable pressure gradient beneath the recirculation region, near x = −0.9 followed
immediately by a local maximum near x = −0.8, which is an adverse pressure gradient
with respect to the near-wall flow direction. This rapid increase in the streamwise
pressure gradient in the near-wall flow direction causes the flow across the boundary
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Figure 11. Re = 104 at t = 1.55. For caption details see figure 7.

layer to be compressed in the streamwise direction. This streamwise compression of
a portion of the primary recirculation region leads to growth in the normal direction
that accelerates formation of the spike in the region of rapid change in pressure
gradient. It also induces an increase in skin friction at the same streamwise location
as the minimum in pressure gradient (see, for example, figure 9). The magnitudes
of these peaks in skin friction and streamwise pressure gradient increase rapidly
with time and are indicative of the flow tending toward the interacting boundary-
layer singularity in which these quantities become singular in the absence of normal
pressure gradient effects (Smith 1988). The splitting of the recirculation region near
x = −1.0 into two corotating eddies is also caused by changes in the streamwise
pressure gradient. With respect to the near-wall flow direction, by t = 1.3 (figure 9)
there is a rapid decrease in streamwise pressure gradient at this location causing the
recirculation region to be stretched, eventually splitting by t = 1.45 (see figure 10).

These results show that it is the large-scale interaction and the changes it produces
that are responsible for the accelerated spike formation, splitting of the primary
recirculation region into corotating eddies, and formation of a secondary recirculation
zone due to the locally adverse pressure gradient induced by the presence of the
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primary recirculation region. Recall that all but the latter feature have been observed
in at least some of the interacting boundary-layer results of Peridier et al. (1991b);
without large-scale interaction these features do not occur (see Peridier et al. 1991a).
Observe in figure 10 at t = 1.45 that the presence of the secondary recirculation
region leads to the formation of a local minimum in streamwise pressure gradient at
x ≈ −0.75. This is analogous (but opposite in direction) to the local maximum in
pressure gradient induced by the large-scale interaction that led to the formation of
the secondary recirculation region. In the same way, the local minimum in pressure
gradient caused by the secondary recirculation region becomes locally adverse, i.e.
negative, near x = −0.75 at t = 1.55 (figure 11) and leads to formation of a tertiary
recirculation region near x = −0.75. This cascade of eddies begetting smaller eddies
is observed to occur over and over during the subsequent stages of the calculations
in the moderate-Reynolds-number regime and is an important feature in determining
the overall evolution of the flow field.

For comparison with the series of results described for Re = 104, the results for
Re = 105 at t = 1.35 are shown in figure 12. As described previously, the large-
scale interaction begins later as compared to Re = 104 and occurs over a shorter
streamwise scale. The resulting changes in streamwise pressure gradient along the
surface again cause the recirculation region to be compressed in the vicinity of
x = −0.65, producing a spike, and stretched in the streamwise direction near x = −0.7,
splitting the recirculation region into two corotating eddies. In addition to the shorter
scales over which these events occur, the results for Re = 105 also reveal the formation
of a secondary spike to the left of the primary spike. Just as for the primary spike,
it is formed because of a streamwise compression as evidenced by the rapid increase
in pressure gradient in the near-wall flow direction in the vicinity of x = −0.825 (see
figure 12b).

In order to compare the Navier–Stokes solutions obtained here with the theory
describing how normal pressure gradients modify the unsteady separation process
(Hoyle et al. 1991; Li et al. 1998), results are given in figure 13 for the normal pressure
gradient superimposed on streamwise velocity profiles at a series of streamwise
locations for Re = 105 at t = 1.35, corresponding to figure 12. On the boundary-
layer scale, the contours of normal pressure gradient are ∂p/∂ȳ = −0.1, −0.03,
−0.01, −0.001, 0.001, 0.01, 0.03, 0.1 and 0.3; on the physical scale, these contour levels
correspond to ∂p/∂y = −31.6, −9.5, −3.2, −0.3, 0.3, 3.2, 9.5, 31.6 and 94.9, respectively.
The distance between the streamwise velocity profile stations where u = 0 corresponds
to the magnitude of streamwise velocity equal to 3.0, which is comparable with the
magnitude of the maximum inviscid velocity, |Ue|max ≈ 2.5, induced by the thick-core
vortex. The dotted line is the normal location of the inflection points that occur
in the streamwise velocity profile, and the dashed line is the zero-vorticity contour.
Recall from the MRS criterion for unsteady separation that the non-interactive
boundary-layer singularity, i.e. the terminal boundary-layer solution, occurs along the
zero-vorticity line, and the vortex wind-up postulated by Hoyle et al. (1991) and Li
et al. (1998) occurs in a critical layer surrounding the inflection point.

The normal pressure gradient remains negligible throughout the early stages of
the calculation. Cassel (2000) determined that for Re = 105, normal pressure gradi-
ents begin to become an O(1) influence on the flow (on the boundary-layer scale)
at approximately t = 1.2. For example, the contour corresponding to ∂p/∂ȳ = 0.01
(∂p/∂y = 3.2) does not appear until approximately t = 1.25. It then increases rapidly
in magnitude such that by t = 1.35, the normal pressure gradient is of comparable
magnitude to the streamwise pressure gradient (cf. figure 12b). A local maximum
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Figure 12. Results for Re = 105 at t = 1.35. (a) Streamlines and vorticity contours (dashed line
is ω = 0), (b) streamwise pressure gradient along the surface (solid) and skin friction coefficient
(dashed).

begins to form immediately above the growing spike, which is after the time at which
the spike begins to form and before the approximate time at which the interacting
boundary-layer singularity would occur (see Cassel 2000), consistent with the theo-
retical sequence. At t = 1.35 this maximum is centred at approximately (−0.65, 0.025)
in figure 13. A corresponding minimum forms near the wall at the same streamwise
location and centred at approximately (−0.65, 0.004). This maximum and minimum
pair is a consequence of the streamwise compression that occurs in this same location
owing to the rapid increase in streamwise pressure gradient in the near-wall flow
direction (see figure 12b). As the recirculation region is compressed in the streamwise
direction, the flows above and below it are compressed in the normal direction causing
an increase in the magnitude of the normal pressure gradient and a dampening of the
growth of the spike in the direction normal to the wall. Note that the maximum and
minimum pairs tend to form above and below the normal position of the inflection
point in the streamwise velocity profiles as can be seen by the pair that is in an early
stage of development near x ≈ −0.825, where the secondary spike is forming. The
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maximum in normal pressure gradient centred near (−0.625, 0.006) is a consequence
of the growth, owing to a streamwise compression, of the secondary recirculation
region that is forming near this same streamwise location (see figure 12). Although it
is clear that the normal pressure gradient has become significant in the Navier–Stokes
calculations, it is difficult to determine whether it does so in a manner consistent with
the results of Li et al. (1998).

In order to gain greater insight into the differences between the low- and moderate-
Reynolds-number regimes, namely the appearance or lack of a spike, the location
of the rapid increase in streamwise pressure gradient in the near-wall flow direction
that leads to accelerated spike formation is tracked with time for various Reynolds
numbers in figure 14. More specifically, the streamwise location of the maximum
slope in streamwise pressure gradient in this region is followed with time; move-
ment in the positive x-direction is upstream with respect to the flow in the lower
portion of the thick-core vortex. For comparison, the streamwise location of the
non-interacting boundary-layer singularity is xs = −0.375 (Cassel 2000). Beginning at
approximately t = 1.0, when a well-defined maximum has developed, the compression
region initially moves downstream for all cases except Re = 105. Whereas this trend
continues for the case with Re = 103, the other cases have a period of time during
which there is an upstream movement of the compression region. For example, this
occurs for 1.2 < t < 1.5 for the case with Re = 3× 104. This upstream movement is
more pronounced as the Reynolds number is increased. The upstream movement of
the compression region is eventually reversed owing to generation and growth of a
region of negative near-wall vorticity (see, for example, figure 11a) that weakens the
near-wall structure allowing it to convect downstream.

3.2. Post-eruptive behaviour

In the previous section, results of the Navier–Stokes calculations have been described
for the unsteady separation induced by a thick-core vortex through the early stages of
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development including large-scale interaction, spike formation and subsequent small-
scale interaction and normal pressure gradient effects. This corresponds to the stages
for which the theory for unsteady separation has been developed and roughly up to
the time at which the non-interactive boundary-layer singularity occurs, i.e. ts = 1.402.
For some of the cases considered, it was possible to continue the calculations well
beyond this time and observe the mechanisms by which the unsteady separation
process leads to a pulling away of the primary recirculation region and detachment
of the thick-core vortex; these results are described here.

Returning to the case with Re = 104, a series of results are shown in figures 15
and 16. Note that the extent of the horizontal scale has been reduced and that of the
vertical scale has been expanded in figure 15 as compared to that in figure 11. Fig-
ure 15(a) shows the instantaneous streamlines and vorticity contours at time t = 1.9.
By this time the negative vorticity associated with the secondary recirculation region
observed at t = 1.55 (see figure 11a) is ejected, splitting the primary recirculation
region near x = −0.8 to form what Brinckman & Walker (2001) refer to as an
‘alleyway’ in the streamlines and a ‘spike-like finger’ in the vorticity field. The primary
recirculation region produced by the adverse pressure gradient, which is induced by
the thick-core vortex, has by this time split into three eddies; the one centred near
x ≈ −0.95 originated as the spike, the eddy centred near x = −1.25 split at t ≈ 1.4
owing to a streamwise expansion, and the eddy near x = −0.7 was split off owing to
the ejection of near-wall vorticity near x = −0.8. As shown in figure 15(b) at t = 2.3,
the eddy that was centred at approximately x = −1.2 at t = 1.55 and x = −1.25
at t = 1.9 merges with the larger eddy upstream as the vorticity contained within
the downstream eddy winds around the upstream eddy. In addition, another eddy
near x = −0.5 has split off the original primary recirculation region owing to the
normal growth of the secondary eddy that was centred near x = −0.55 at t = 1.9.
The flow structure observed at t = 1.9 and t = 2.3 is representative of the results
for Reynolds numbers within the moderate-Reynolds-number regime with the split-
ting of the primary recirculation region into a series of corotating eddies, formation
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Figure 15. Instantaneous streamlines and vorticity contours for Re = 104 (dashed line is ω = 0).
(a) t = 1.9, (b) t = 2.3.

of corresponding secondary recirculation regions, and multiple ejections of near-wall
vorticity. These features are also evident in the results of Brinckman & Walker (2001).

In order to observe the interaction between the growing eddies and the thick-core
vortex on the scale of the vortex, the extent of the horizontal and vertical scales
have been expanded in figure 16. The three eddies observed at t = 2.3 in figure 15(b)
are visible on the scale of the thick-core vortex in figure 16(a), which shows the
instantaneous streamlines and vorticity contours at t = 2.5. By t = 3.0, the two largest
of these eddies have merged, as shown in figure 16(b), in a manner similar to that
observed between t = 1.9 and t = 2.3 (see figure 15). This amalgamated eddy is then
observed to pull away from the surface in what is probably a predominantly inviscid
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interaction between this portion of what was once the primary recirculation region
and the thick-core vortex. As shown in figure 16(c), this process leads to ‘detachment’
of the vortex, which up until this time has not moved substantially from its inviscid
location (xc, yc) = (0, 1), and convection downstream with the freestream flow. Vortex
detachment, therefore, appears to be a process involving the weakening of the thick-
core vortex owing to interaction with opposite sign vorticity originally introduced
into the flow by the unsteady boundary-layer separation process. Note that at t = 4.5
(figure 16c), the secondary structures exhibit similar behaviour to that observed
in the primary recirculation region at earlier times, for example, splitting of the
secondary eddy and ejection of near-wall vorticity near x = −0.4. It has been shown
in a companion study (Obabko 2001; Obabko & Cassel 2002) that the detachment
process for Re = 103, which is representative of the low-Reynolds-number regime, is
remarkably similar to that in the moderate-Reynolds-number regime despite the very
different near-wall flow evolution.

For comparison with these results for Re = 104, results are shown for another
Reynolds number within the moderate-Reynolds-number regime, Re = 3× 104, at
t = 1.7 in figure 17(a). As for Re = 104, the primary recirculation region is split into
a series of eddies by streamwise expansion near x = −0.95 and successive ejections
of negative near-wall vorticity near x = −0.75, x = −0.6 and x = −0.5, in turn.
Immediately upstream of the eddies centred near x = −1.1 and x = −0.85, the
near-wall vorticity is ejected abruptly away from the surface and wraps around the
respective eddies. At subsequent times, the downstream eddies begin to merge prior
to their movement away from the surface and subsequent vortex detachment (not
shown), just as for the case with Re = 104. More detailed results for the case with
Re = 3× 104 are given in Obabko (2001).

Finally, we comment on the instability observed in the Navier–Stokes calculations
of Brinckman & Walker (2001) for a similar vortex-induced flow. High-frequency
oscillations in vorticity were observed to occur in regions between eddies, referred
to as alleyways, where the streamlines sweep down toward the surface then back
out again. These oscillations were attributed to the possible presence of a Rayleigh
instability that can occur once there is an inflection point in the velocity profile.
Similar oscillations have been observed in the present calculations under certain
conditions. For example, figure 17(b) shows the zero-vorticity line for a calculation
with Re = 3 × 104 at t = 1.7. This is at the time shown in figure 17(a) but from
a calculation carried out on a grid with a quarter the resolution in the streamwise
direction (1025×513) and a larger time step (∆t = 3×10−6 compared to ∆t = 2×10−6).
Just as in Brinckman & Walker (2001), the subsequent ejection of near-wall vorticity
in the regions between eddies (near x = −1.0 and x = −0.75) is followed by
the development of high-frequency oscillations in vorticity. The increased spatial
and temporal resolution used in the calculation shown in figure 17(a), however,
substantially delays the onset of the instability. For some of the Reynolds numbers
considered, the oscillations have been completely removed by increasing the resolution,
and the calculations have been carried out through to vortex detachment. For the
case with Re = 104, for example, a grid with 513 × 513 points produces oscillations
similar to those observed in figure 17(b). On a 1025 × 513 grid, minor inaccuracies
begin to appear at approximately t = 1.75 near saddle points in the vorticity field in
the vicinity of the region between the central and right eddies. Small oscillations then
begin to appear and grow until approximately t = 1.85 after which the oscillations
disappear, roughly coinciding with the time at which local ejection of vorticity occurs
in this region. Note that these oscillations are not visible on the scale shown in
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Figure 17. Results for Re = 3× 104 at t = 1.7. (a) Streamlines and vorticity contours
(dashed line is ω = 0), (b) zero-vorticity contour for case with instability.

figure 15(a). On a grid with 2049 × 513 points, the inaccuracies in vorticity are
even less pronounced and do not lead to any oscillations. It appears that the initial
growth of the instability is greatly affected by the spatial resolution, such that the
perturbations due to increased inaccuracies on the coarser grids are amplified by the
instability leading to high-frequency oscillations.

4. Discussion
Solutions of the unsteady Navier–Stokes equations have been obtained for the flow

induced by a thick-core vortex convecting above a surface in a uniform flow. These
results show that in terms of the nature of interaction between the viscous boundary
layer and the inviscid outer flow, the unsteady separation process evolves differently
in three Reynolds-number regimes, as shown schematically in figure 18 (cf. figure 1).
The times shown in the figure are approximate values at which each of the stages
begins in the non-interacting boundary-layer solution (figure 18a) and the Navier–



Navier–Stokes solutions of unsteady separation induced by a vortex 125

t = 0 ts = 1.402

Small-scale
interaction

Non-interactive
boundary layer

t = 0

Large-scale
interaction

Non-interactive
boundary layer

t = 0

Non-interactive
boundary layer

(a)

t E 1.3

Small-scale
interaction

t E 1.1

(b)

(c)

t E 0.7–0.8

t E 0.6–0.7

Large-scale
interaction

Figure 18. Schematic of the three Reynolds-number regimes for viscous–inviscid interaction in un-
steady separation. (a) High-Reynolds-number regime, e.g. Re→∞, (b) moderate-Reynolds-number
regime, e.g. Re = 104, (c) low-Reynolds-number regime, e.g. Re = 103.

Stokes solutions at the Reynolds numbers listed in the captions for figures 18(b)
and 18(c). At high Reynolds numbers (e.g. Re→ ∞), exemplified by solutions of the
non-interactive boundary-layer equations, the flow begins to develop a very sharp
spike at tspike ≈ 1.3 that evolves toward a singularity at ts = 1.402. Just prior to
formation of the boundary-layer singularity, the growing spike provokes a small-scale
interaction with the outer inviscid flow requiring another reduced set of equations.
This is represented by the second tier in figure 18(a). This small-scale interaction was
thought to be governed by the so-called first interactive stage formulated by Elliott
et al. (1983) and solved numerically by Cassel et al. (1996). At moderate Reynolds
numbers (e.g. Re = 104), the flow develops initially in the same manner as in the
high-Reynolds-number case; however, a large-scale interaction begins well before
the formation of the spike (the second tier in figure 18b). One consequence of the
large-scale interaction in the moderate-Reynolds-number regime is an acceleration
of the process that leads to spike formation; the spike then provokes a small-scale
interaction (the third tier in figure 18b). At low Reynolds numbers (e.g. Re = 103),
large-scale interaction begins just as in the moderate-Reynolds-number case; however,
no spike forms at later times on a streamwise scale that is distinct from that of the
primary recirculation region, thus eliminating the small-scale interaction as depicted
in figure 18(c).

It appears that it is the development of a locally strong outflow within the boundary
layer that initiates the large-scale interaction, whereas it is the formation of a sharp,
rapidly growing spike that initiates the small-scale interaction. This outflow begins
to develop immediately upstream (to the right) of the primary recirculation region
which acts as a barrier and causes the flow to change directions abruptly in order
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Figure 19. The times at which significant events occur within the three Reynolds-number regimes.

to pass over it. Solutions in the moderate-Reynolds-number regime are marked by a
distinct upstream movement of the primary recirculation region that intensifies this
outflow and contributes to spike formation.

An alternative depiction of the Reynolds-number regimes is shown in figure 19,
where the times at which the large-scale interaction, spike formation, small-scale
interaction and initial vorticity ejection begin are shown schematically. Note that
solid lines represent estimated times from the Navier–Stokes calculations of the thick-
core vortex, dashed lines represent conjecture, and the times ts and tspike are from
a boundary-layer calculation of the thick-core vortex (Cassel 2000). The ejection
time te is taken as the moment when negative vorticity penetrates through the pri-
mary recirculation region. Because the thickness of the boundary layer is O(Re−1/2),
the effect of the large-scale interaction diminishes, becoming important later in the
solution, as the Reynolds number increases, and ultimately vanishing as Re → ∞.
In contrast, over the range of Reynolds numbers considered, the spike begins to
form and the subsequent small-scale interaction begins earlier in time with increas-
ing Reynolds number. This is due to the increased compressive effect across the
boundary layer in the streamwise direction as Reynolds number is increased. The
time at which the spike begins to form, however, must then increase to match the
limiting-Reynolds-number case, i.e. tspike ≈ 1.3, suggesting that there is a critical
Reynolds number at which it is a minimum. This is probably due to two compet-
ing influences. At lower Reynolds numbers, the large-scale interaction begins earlier,
but the resulting streamwise compression occurs over a larger streamwise scale and
evolves more slowly. At higher Reynolds numbers, on the other hand, the large-scale
interaction begins later but leads to a more rapid compression and subsequent spike
formation.
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In the moderate-Reynolds-number regime, the upstream motion of the compression
region diminishes, the streamwise width of the spike increases and its growth rate
slows as the Reynolds number decreases, until the low-Reynolds-number regime is
reached, below which no spike forms and there is no small-scale interaction. It has
not been possible with the calculations presented here to determine the upper limit
of the moderate-Reynolds-number regime, above which no large-scale interaction
occurs. It is possible that the large-scale interaction is an important feature in
unsteady separation for all but the limit as Re→∞ and must be accounted for in the
high-Reynolds-number asymptotic theory. This may be the cause of the immediate
breakdown of the first interactive stage (see Cassel et al. 1996), which only accounts
for the small-scale interaction associated with the growing spike.

It should be emphasized that the large-scale interaction that occurs in the moderate-
Reynolds-number regime is not simply a finite-Reynolds-number modification of the
boundary-layer results, for example a spike with finite thickness rather than zero thick-
ness as Re → ∞, but rather it leads to a different sequence of physical events that
significantly alters the flow for moderate Reynolds numbers. The additional features
that appear in the solutions for cases within the moderate-Reynolds-number regime,
but not the high-Reynolds-number regime, can all be traced to the influence of the
large-scale interaction. This large-scale interaction begins to have a significant influ-
ence on the flow development well before spike formation begins in the non-interacting
boundary-layer results. It leads to changes in the streamwise pressure gradient within
the boundary layer that evolve into a region of streamwise compression of a portion
of the recirculation region owing to a rapid increase in the pressure gradient in the
near-wall flow direction. This streamwise compression contributes to the growth that
occurs in the direction normal to the surface resulting in an acceleration of spike
formation. In addition, regions of local expansion occur in the streamwise direction,
where the pressure gradient decreases rapidly in the near-wall flow direction, causing
the recirculation region to split into multiple corotating eddies. The locally adverse
pressure gradients due to each of these eddies then lead to formation of a series of
secondary recirculation regions. The growth of the secondary recirculation regions
also leads to splitting of the primary eddies as near-wall vorticity is ejected away from
the surface. Several of these features have also been observed in the Navier–Stokes
solutions obtained by Brinckman & Walker (2001) for a similar vortex-induced flow.
It is interesting to note that the duration in time from the impulsive start to the time
at which the non-interacting boundary-layer singularity occurs, ts = 1.402, roughly
corresponds to a one-third turn of the thick-core vortex, illustrating how rapidly the
unsteady separation process is initiated and evolves toward a significant eruption.

After interaction becomes important, normal pressure gradients, which are zero to
leading order in the non-interacting boundary-layer equations, become large locally
in order to avoid the interacting boundary-layer singularity (Smith 1988). Li et al.
(1998) predict that the presence of normal pressure gradients and an associated
critical layer containing the inflection point in the streamwise velocity profiles leads
to a ‘vortex wind-up.’ Although the formation of multiple eddies in the Navier–Stokes
solutions obtained here bears some resemblance to this vortex wind-up, the process
observed here appears to have as much to do with the evolution of the streamwise
pressure gradient, which results from the interaction, as it does with normal pressure
gradient effects (at least at the Reynolds numbers considered here). It may be that
the presence of normal pressure gradients simply retards the growth of the spike in
the normal direction, thus preventing the interacting boundary-layer singularity, and
allowing time for the natural tendency of separated vorticity layers to roll up and form
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discrete vortices. Alternatively, it is possible that the cause and effect relationships
involving streamwise pressure gradients observed in this investigation are unified with
the normal pressure gradient effects (including vortex wind-up) by the theory of Li
et al. (1998).

Results for two cases in the moderate-Reynolds-number regime, Re = 104 and
Re = 3× 104, have also been shown for times well past that at which interaction
and spike formation first begin. These results reveal a process in which the primary
recirculation region interacts with the surface and produces a cascade of secondary
and tertiary eddies, each of which forms successively upstream (in a local sense) from
the previous one. Each secondary eddy then grows, splitting the primary recirculation
region and ejecting near-wall vorticity into the outer flow. As the Reynolds number
increases, the time of the initial ejection te is found to tend toward the time of the
erupting singularity of Cassel (2000) in the limit Re → ∞ (see figure 19). A similar
trend is observed for the streamwise location of the vorticity ejection xe.

While the process of splitting the primary recirculation region into a series of
corotating eddies repeats itself on the upstream side of the separation structure, the
eddies that originated from the primary recirculation region then begin to merge
sequentially from the downstream side of the structure. Ultimately, the largest of
the merged eddies, which contains vorticity having opposite sign as compared to
the thick-core vortex, moves away from the surface and interacts with the vortex,
causing it to detach and convect downstream with the freestream velocity. This
unsteady separation process is very similar to that observed in flow visualizations of
juncture flows in which a series of eddies form within the boundary layer upstream
of an obstacle leading to several ejections of near-wall vorticity in thin spires and a
subsequent merging of the eddies (see, for example, Seal et al. 1995, 1997). Also note
that the splitting of eddies and formation of secondary eddies have been detected
experimentally by Bouard & Coutanceau (1980). The merging of eddies and vorticity
ejections that contribute to splitting of the primary recirculation region may be
observed also in numerical solutions of the two-dimensional incompressible flow
around a circular cylinder (Koumoutsakos & Leonard 1995).

Although the near-wall flow development is very different in the low- and moderate-
Reynolds-number regimes, the detachment process is observed to be very similar.
Therefore, the fact that the spike forms and vorticity ejection occurs in the moderate-
Reynolds-number regime, but not in the low-Reynolds-number regime, appears to
play a secondary role in terms of the vortex detachment process. In fact, for cases
in the low-Reynolds-number regime, such as Re = 103, detachment occurs earlier in
non-dimensional time than for cases within the moderate-Reynolds-number regime,
such as Re = 104 (Obabko 2001; Obabko & Cassel 2002). Although spike formation
and vorticity ejection are two of the critical features in the near-wall flow development,
they do not appear to be good indicators of whether the vortex will detach, at least
not for the range of Reynolds numbers considered in this investigation. It is possible
that this may change as the Reynolds number is increased and the eruption intensifies.

A similar vortex-induced problem was considered by Brinckman & Walker (2001)
who have observed the development of a high-frequency oscillation in vorticity
in regions, referred to as alleyways, where the streamlines from the outer flow
sweep down toward the wall. A similar instability was observed to occur in some
of the cases in the present investigation; however, it was possible to delay and
sometimes remove the oscillations by increasing the spatial and temporal resolution.
The fact that calculations of two similar flows using different algorithms both produce
very similar oscillations suggests that the instability is not purely numerical, but
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apparently has some physical basis. This is supported by the results of Brinckman &
Walker (2001) who found that the approximate wavenumber of the instability has a
Reynolds-number scaling that is consistent with a Rayleigh instability. The somewhat
different behaviour of the instability in the two sets of calculations is probably due
to differences in spatial and temporal resolution and/or problem dependencies. For
example, Brinckman & Walker consider a model problem in which the external flow
that induces the evolution of the near-wall flow is uncoupled from the developing
viscous response, whereas in this investigation the entire flow field, including the
thick-core vortex, is computed. From the results of this investigation, it appears that
refining the grid reduces inaccuracies that develop in the vicinity of saddle points in
the vorticity field. It is possible that it is these inaccuracies that provide the initial
perturbation that then grows according to the instability observed by Brinckman &
Walker (2001).
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